Мышечный насос продвигает кровь по направлению

Мышечный насос продвигает кровь по направлению

Мышечный насос

Словарь терминов по физиологии сельскохозяйственных животных . Болгарчук Роман . 2009 .

Смотреть что такое “Мышечный насос” в других словарях:

Гемодинамика — Гемодинамика движение крови по сосудам, возникающее вследствие разности гидростатического давления в различных участках кровеносной системы (кровь движется из области высокого давления в область низкого). Зависит от сопротивления току крови … Википедия

Поро́ки се́рдца приобретённые — Пороки сердца приобретенные органические изменения клапанов или дефекты перегородок сердца, возникающие вследствие заболеваний или травм. Связанные с пороками сердца нарушения внутрисердечной гемодинамики формируют патологические состояния,… … Медицинская энциклопедия

К созданию — Википедия:К созданию Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание К администраторам · К созданию · К улучшению · К переименованию · К объединению · К разделению · К удалению · К восстановлению · Обсуждение… … Википедия

ЖЕЛУДОК — ЖЕЛУДОК. (gaster, ventriculus), расширенный отдел кишечника, имеющий благодаря наличию специальных желез значение особо важного пищеварительного органа. Ясно диференцированные «желудки» многих беспозвоночных, особенно членистоногих и… … Большая медицинская энциклопедия

СЕРДЦЕ — СЕРДЦЕ. Содержание: I. Сравнительная анатомия. 162 II. Анатомия и гистология. 167 III. Сравнительная физиология. 183 IV. Физиология. 188 V. Патофизиология. 207 VІ. Физиология, пат.… … Большая медицинская энциклопедия

Сердце — I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия

СЕРДЦЕ — мощный мышечный орган, нагнетающий кровь через систему полостей (камер) и клапанов в распределительную сеть, называемую системой кровообращения. У человека сердце расположено вблизи центра грудной полости. Оно состоит в основном из прочной… … Энциклопедия Кольера

Лимфатическое сердце — Эта статья по общей анатомии; по анатомии человека см.: Грудной лимфатический проток. Лимфатическое сердце особый орган лимфатической системы у ряда позвоночных, служащий для передвижения лимфы и обладающий способностью ритмически… … Википедия

Медицина — I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

Инъекция — I Инъекция (лет. injectio вбрасывание; синоним впрыскивание) способ парентерального введения в организм лекарственных и диагностических средств в виде растворов или суспензий в объеме до 20 мл путем их нагнетания под давлением в различные среды… … Медицинская энциклопедия

Показатели работоспособности дыхательного аппарата

Показатели работоспособности сердца

Систолический объем кровиколичество крови, выталкиваемое одним желудочком сердца в сосудистое русло при одном сок­ращении.

Минутный объем крови – количество крови, выбрасываемое одним желудочком сердца в течение одной минуты.

ЧСС, или артериальный пульс является весьма информативным показателем работоспособности сердечно-сосудистой системы и всего организма. В процессе спортивной тренировки частота пульса в покое со временем становится реже за счет увеличения мощности каждого сердечного сокращения.

2-4 Механизм мышечного насоса.

Мышечным насосом называют механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействие ритмических сокращений и расслаблений скелетных мышц.

Когда участок вены между двумя клапанами наполнен кровью, сокра­щение расположенных рядом с ним мышц, сопровождаемое их утолщением сдавливает вену и проталкивает порцию крови вверх, к сердцу, так как движению крови вниз, в противоположную от сердца сторону, препятствует закрывшийся клапан. При последующем расслаблении мышц данный участок вены расправляется и засасывает снизу через открывшийся клапан новую порцию крови. Сверху участок вены перекрывается клапаном, и кровь в обратном от сердца направлении не поступает в данный участок вены.

Чем чаще сокращаются и расслабляются мышцы, чем полнее их сокращение и расслабление, тем большую помощь сердцу оказывает мышечный насос. Особенно эффективно он работает в таких упражнениях как бег, плавание, бег на лыжах и т. д.

2-5 Влияние двигательной активности на дыхательную систему. Показатели работоспособности дыхательного аппарата

Аппарат дыхания состоит из воздуховодных путей и легких. Воздуховодные пути включают в себя носоглотку, гортань, трахею, бронхи и бронхиолы, доставляющие атмосферный воздух в альвеолы, огромное количество которых и составляет собственно легочную ткань. Альвеолы – это тонкостенные, наполненные воздухом пузырьки, густо оплетенные кровеносными легочными капиллярами. Подсчитано, что легкие содержат около 600-700 млн. альвеол. Физические нагрузки увеличивают число альвеол в легких, совершенствуя тем самым дыхательный аппарат и увеличивая его резервы.

Физические упражнения оказывают большое влияние на формирование аппарата дыхания.

Показателями работоспособности органов дыхания являются дыхательный объем, частота дыхания, жизненная емкость легких, легочная венти­ляция, кислородный запрос, потребление кислорода, кислородный долг и др.

Дыхательный объем – количество воздуха, проходящее через легкие при одном дыхательном цикле (вдох, выдох, дыхательная пауза).

Частота дыхания – количество дыхательных циклов в 1 мин.

Жизненная емкость легких – максимальное количество воздуха, которое может выдохнуть человек после полного вдоха (измеряется методом спирометрии).

Легочная вентиляция – объем воздуха, который проходит через легкие за 1 мин.

Кислородный запрос – количество кислорода, необходимое организму для обеспечения процессов жизнедеятельности в различных условиях покоя или работы в 1 мин.

Суммарный кислородный запрос – это количество кислорода, необходимое для выполнения всей работы.

Потребление кислорода, – количество кислорода, фактически использованного организмом в покое иди при выполнении какой-либо работы за 1 мин.

Кислородный долг – разница между кислородным запросом и количеством кислорода, которое потребляется во время работы за 1 мин.

2-6 Механизм дыхательного насоса.

При динамической циклической мышечной работе движению крови в ве­нах способствует дыхательный насос.

Действие дыхательного насоса заключается в том, что при вдохе давление в грудной клетке понижается и даже может достигать отрица­тельных значений. Поэтому при учащении дыхания во время динамических, преимущественно циклических движений увеличивается присасывающее действие грудной клетки, что способствует продвижению крови по веноз­ным сосудам к сердцу.

При статических усилиях, сопровождающихся натуживанием, давление внутри грудной клетки, наоборот, повышается, что затрудняет кровообра­щение и снижает приток крови к сердцу по венам. В результате уменьша­ется объем крови выбрасываемой в сосудистое русло, снижается АД, ухудшается кровоснабжение всех органов.

Поэтому при выполнении силовых статических усилий надо стремиться не задерживать дыхание, а при занятиях с тяжестями (штанга, гири) и поднимании значительного веса необходимо осуществлять страховку.

2-7 Рекомендации по дыханию при занятиях физическими упражнениями и спортом.

Дыхательная система – единственная внутренняя система, которой человек может управлять произвольно. Поэтому можно дать следующие рекомендации:

а) дыхание необходимо осуществлять через нос, и только в случаях интенсивной физической работы допускается дыхание одновременно через нос и узкую щель рта, образованную языком и небом. При таком дыхании воздух очищается от пыли, увлажняется и согревается прежде чем поступить в полость легких, что способствует повышению эффективности дыхания и сохранению дыхательных путей здоровыми;

б) при выполнении физических упражнений необходимо регулировать дыхание:

– во всех случаях выпрямления тела делать вдох;

– при сгибании тела делать выдох;

– при циклических движениях ритм дыхания приспосабливать к ритму движения с акцентом на выдохе. Например, при беге делать на 4 шага вдох, на 5…6 шагов выдох или на 3 шага вдох и на 4…5 шагов выдох и т.д.

– избегать частых задержек дыхания и натуживания, что приводит к застою венозной крови в периферических сосудах.

Наиболее эффективно функцию дыхания развивают физические циклические упражнения с включением в работу большого количества мышечных групп в условиях чистого воздуха (плавание, гребля, лыжный спорт, бег и др.).

2-8 Воздействие двигательной активности на опорно-двигательный аппарат (кости, сус­тавы, мышцы).

Скелетная мускулатура – главный аппарат, при помощи которого совершаются физические упражнения. Хорошо развитая мускулатура является надежной опоройдля скелета. Тренированные мышцы спины укрепляют позвоночный столб, разгружают его, беря часть нагрузки на себя, предотвращают “выпадение” межпозвоночных дисков, соскальзывание позвонков.

Физические тренировки также способствуют развитию и укреплению костей,

сухожилий и связок. Кости становятся более прочными и массивными, сухожилия и

связки крепкими и эластичными.

Систематические занятия физическими упражнениями способствуют укреплению мышц. Под влиянием физической нагрузки мышцы не только лучше растягиваются, но и становятся более твердыми.

2-9 Рефлекторная природа двигательной деятельности. Этапы формирования двигатель­ного навыка.

Нервная система действует по принципу рефлекса. Рефлекс – это ре­акция организма на раздражение, поступающее из внутренней или внешней среды, осуществляемая при посредстве ЦНС. Биологическая сущность рефлекса – в приспособлении организма к изменениям во внешней и внутрен­ней среде. унаследованные рефлексы, заложенные от рожде­ния в нервной системе, называют безусловными. Примером простей­шего двигательного безусловного рефлекса является непроизвольное отдергивание руки при ожоге. Рефлексы, формирующиеся в результа­те сочетания различных раздражителей с безусловными рефлексами, называются условными.

Вся деятельность человека, в том числе и овладение двигательны­ми навыками, протекает по принципу взаимосвязи условных рефлек­сов с безусловными рефлексами. Рефлекторная природа двигатель­ной деятельности лежит в основе любого мышечного действия. Именно посредством рефлекса в реализацию конкретного движения вовлекаются все необходимые в данный момент мышцы, органы и си­стемы организма.

Читайте также:  Насосы для откачки воды из подвалов - Все о канализации

Дата добавления: 2015-06-04 ; Просмотров: 2262 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Присасывающие действия в кровообращении и мышечный насос

Гравитационный шок. При переходе крови из капилляров в вены давление падает до 10 – 15 мм рт. ст., что значительно затрудняет возврат крови к сердцу, так как ее движению препятствует еще и сила гравитации. Венозному кровообращению способствует присасывающее действие сердца при расслаблении и присасывающее действие грудной полости при вдохе. При активной двигательной деятельности циклического характера воздействие присасывающих факторов повышается. При малоподвижном образе жизни венозная кровь может застаиваться (например в брюшной полости или в области таза при длительном сидении). Вот почему движению крови по венам способствует деятельность окружающих их мышц (мышечный насос). Сокращаясь и расслабляясь, мышцы то сдавливают вены, то прекращают этот пресс, давая им расправиться и тем самым способствуют продвижению крови по направлению к сердцу, в сторону пониженного давления, так как движению крови в противоположную от сердца сторону препятствуют клапаны, имеющиеся в венозных сосудах. Чем чаще и активнее сокращаются и расслабляются мышцы, тем большую помощь сердцу оказывает мышечный насос. Особенно эффективно он работает при локомоциях (ходьбе, гладком беге, беге на лыжах, на коньках, при плавании и т.п.). Мышечный насос способствует более быстрому отдыху сердца и после интенсивной физической нагрузки.

Следует упомянуть и о феномене гравитационного шока, который может наступить после резкого прекращения длительной; достаточно интенсивной циклической работы (спортивная ходьба, бег). Прекращение ритмичной работы мышц нижних конечностей сразу лишает помощи систему кровообращения: кровь под действием гравитации остается в крупных венозных сосудах ног, движение ее замедляется, резко снижается возврат крови к сердцу, а от него в артериальное сосудистое русло, давление артериальной крови падает, мозг оказывается в условиях пониженного кровоснабжения и гипоксии. Как результат этого явления – головокружение, тошнота, обморочное состояние, Об этом необходимо помнить и не прекращать резко движения циклического характера сразу после финиша, а постепенно (в течение 3 – 5 минут) снижать интенсивность.

Особенности дыхания. Затраты энергии на физическую работу обеспечиваются биохимическими процессами, происходящими в мышцах в результате окислительных реакций, для которых постоянно необходим кислород. Во время мышечной работы для увеличения газообмена усиливаются функции дыхания и кровообращения. Совместная работа систем дыхания, крови и кровообращения по газообмену оцениваются рядом показателей: частотой дыхания, дыхательным объемом, легочной вентиляцией, жизненной емкостью легких, кислородным запросом, потреблением кислорода, кислородной емкостью крови и т.д.

Частота дыхания. Средняя частота дыхания в покое составляет 15 – 18 циклов в мин. Один цикл состоит из вдоха, выдоха и дыхательной паузы. У женщин частота дыхания на 1 – 2 цикла больше. У спортсменов в покое частота дыхания снижается до 6 – 12 циклов в мин за счет увеличения глубины дыхания и дыхательного объема. При физической работе частота дыхания увеличивается, например у лыжников и бегунов до 20 – 28, у пловцов до 36 – 45 циклов в мин.

Дыхательный объем – количество воздуха, проходящее через легкие при одном дыхательном цикле (вдох, выдох, пауза). В покое дыхательный объем (объем воздуха, поступающего в легкие за один: вдох) находится в пределах 200 – 300 мл. Величина дыхательного объема зависит от степени адаптации человека к физическим нагрузкам. При интенсивной физической работе дыхательный объем может увеличиваться до 500 мл и более.

Легочная вентиляция – объем воздуха, который проходит через легкие за одну минуту. Величина легочной вентиляции определяется умножением величины дыхательного объема на частоту дыхания. Легочная вентиляция в покое может составлять 5 – 9 л. При интенсивной физической работе у квалифицированных спортсменов она может достигать значительно больших величин (например, при дыхательном: объеме до 2,5 л и частоте дыхания до 75 дыхательных циклов в минуту легочная вентиляция составляет 187,5 л, т.е. увеличится в 25 раз и более по сравнению с состоянием покоя).

Жизненная емкость легких (ЖЕЛ) – максимальный объем воздуха, который может выдохнуть человек после максимального вдоха. Средние значения ЖЕЛ составляют у мужчин 3800 – 4200 мл, у женщин 3000 – 3500 ил. ЖЕЛ зависит от возраста, массы, роста, пола, состояния физической тренированности человека и от других факторов. У людей с недостаточным физическим развитием и имеющих заболевания эта величина меньше средней; у людей, занимающихся физической культурой, она выше, а у спортсменов может достигать 7000 мл и более у мужчин и 5000 мл и более у женщин. Широко известным методом определения ЖЕЛ является спирометрия (спирометр – прибор, позволяющий определить ЖЕЛ).

Кислородный запрос – количество кислорода; необходимое организму в 1 минуту для окислительных процессов в покое или для обеспечения работы различной интенсивности. В покое для обеспечения процессов жизнедеятельности организму требуется 250 – 300 мл кислорода. При интенсивной физической работе кислородный запрос может увеличиваться в 20 и более раз. Например, при беге на 5 км кислородный запрос у спортсменов достигает 5 – 6 л.

Суммарный (общий кислородный) запрос – количество кислорода, необходимое для выполнения всей предстоящей работы. Потребление кислорода – количество кислорода, фактически использованного организмом в состоянии покоя или при выполнении какой-либо работы. Максимальное потребление кислорода (МПК) – наибольшее количество кислорода, которое может усвоить организм при предельно напряженной для него работе.

Способность организма к МПК имеет предел, который зависит от возраста, состояния сердечно-сосудистой системы, от активности протекания процессов обмена веществ и находится в прямой зависимости от степени физической тренированности. У не занимающихся спортом предел МПК находится на уровне 2 – 3,5 л/мин. У спортсменов высокого класса, особенно занимающихся циклическими видами спорта, МПК может достигать: у женщин – 4 л/мин и более; у мужчин – 5 л/мин и более. Абсолютная величина МПК зависит также от массы тела, поэтому для более точного ее определения относительное МПК рассчитывается на 1 кг массы тела. Для сохранения здоровья необходимо обладать способностью потреблять кислород как минимум на 1 кг – женщинам не менее 42 мл/мин, мужчинам – не менее 50 мл/мин.

МПК является показателем аэробной (кислородной) производительности организма.

Когда в клетки тканей поступает меньше кислорода, чем нужно для ‘полного обеспечения потребности в энергии, возникает кислородное голодание, или гипоксия.

Гипоксиянаступает по различным причинам. Внешние причины – загрязнение воздуха, подъем на высоту (в горы, полет на самолете) и др. В этих случаях падает парциальное давление кислорода в атмосферном и альвеолярном воздухе и снижается количество кислорода, поступающего в кровь для доставки к тканям. Если на уровне моря парциальное давление кислорода в атмосферном воздухе равно 159 мм рт. ст., то на высоте 3000 м оно снижается до 110 мм, а на высоте 5 000 м – до 75 – 80 мм рт. ст.

Внутренние причины возникновения гипоксии зависят от состояния дыхательного аппарата и сердечно-сосудистой системы, проницаемости стенок альвеол и капилляров, количества эритроцитов в крови и процентного содержания в них гемоглобина, от степени проницаемости оболочек клеток тканей и их способности усваивать доставляемый кислород.

При интенсивной мышечной работе, как правило, наступает двигательная гипоксия. Чтобы полнее обеспечить себя кислородом в условиях гипоксии, организм мобилизует мощные компенсаторные физиологические механизмы. Например, при подъеме в горы увеличиваются частота и глубина дыхания, количество эритроцитов в крови, процент содержания в них гемоглобина, учащается работа сердца. Если при этом выполнять физические упражнения, то повышенное потреблению кислорода мышцами и внутренними органами вызывает дополнительную тренировку физиологических механизмов, обеспечивающих кислородный обмен и устойчивость к недостатку кислорода.

Кислородное снабжение организма представляет собой слаженную систему. Гиподинамия расстраивает эту систему, нарушая каждую из составляющих ее частей и их взаимодействие. В результате развивается кислородная недостаточность организма, гипоксия отдельных органов и тканей, которая может привести к расстройству обмена веществ. С этого часто начинается снижение устойчивости организма, его резервных возможностей в борьбе с утомлением и влиянием неблагоприятных факторов окружающей среды. Особенно страдает от гипоксии сердечно-сосудистая система, сосуды сердца и мозга. Низкий уровень кислородного обмена в стенках сосудов не только снижает н тонус и возможность управления ими со стороны регуляторных механизмов, но меняет и обмен веществ, что в конечном счете может при вести к возникновению тяжелых расстройств и заболеваний.

Кислородное питание мышц имеет свои особенности. Известно, что в ритмически работающей мышце кровообращение также ритмично Сокращенные мышцы сдавливают капилляры, замедляя кровоток поступление кислорода. Однако клетки мышц продолжают снабжаться кислородом. Доставку его берет на себя миоглобин – дыхательный пигмент мышечных клеток. Роль его важна еще и потому, что только мышечная ткань способна при переходе от покоя к интенсивной работе повышать потребление кислорода в 100 раз.

Таким образом, физическая тренировка, совершенствуя кровообращение, увеличивая содержание гемоглобина, миоглобина и скорость, отдачи кислорода кровью, значительно расширяет возможности организма в потреблении кислорода.

Органы по-разному переносят гипоксию различной длительности. Кора головного мозга – один из наиболее чувствительных к гипоксии органов. Она первой реагирует на недостаток кислорода. Значительно менее чувствительна к недостаткам кислорода скелетная мускулатура. На ней не отражается даже двухчасовое полное кислородное голодание.

Большую роль в регуляции кислородного обмена как в органах и тканях, так и в организме в целом имеет углекислота, являющаяся основным раздражителем дыхательного центра, который располагается в продолговатом отделе головного мозга. Между концентрацией в крови углекислого газа и доставкой кислорода тканям существуют строго определенные соотношения. Изменение содержания углекислого газа в крови оказывает влияние на центральные и периферические регуляторные механизмы, обеспечивающие улучшение снабжения организма кислородом, и служит мощным регулятором в борьбе с гипоксией.

Читайте также:  Плунжерный насос высокого давления - Все о канализации

Систематическая тренировка средствами физической культуры и орта не только стимулирует развитие сердечно-сосудистой и дыхательной системы, но и способствует значительному повышению уровня потребления кислорода организмом в целом. Наиболее эффективно совместную функцию взаимоотношения дыхания, крови, кровообращения развивают упражнения циклического характера, выполняемые на свежем воздухе. Однако следует помнить, насколько важно повышать возможности организма к потреблению кислорода, настолько же важно для него вырабатывать устойчивость к гипоксии. Это качество также совершенствуется в процессе тренировки, с помощью специальных процедур, путем создания искусственных условий гипоксии. Наиболее доступный способ – упражнение с задержкой дыхания. Систематические физические нагрузки определенной мощности, связанные с анаэробной производительностью, обусловливают возникновение в тканях гипоксического состояния, которое с помощью функциональных систем организма при определенных условиях ликвидируется, тем самым эти системы, защищая организм, сами тренируются и совершенствуются. В результате положительный тренировочный эффект в борьбе с гипоксией формирует устойчивость тканей организма к гипоксии.

Итак, физические нагрузки оказывают двойной тренирующий эффект: повышают устойчивость к кислородному голоданию и, увеличивая мощность дыхательной и сердечно-сосудистой систем, способствует лучшей утилизации кислорода.

Дыхательная система может управляться человеком произвольно. Необходимо иметь в виду некоторые приемы управления. Специалисты рекомендуют в условиях относительного покоя дышать через нос и только при интенсивной физической работе дышать одновременно и через рот; во всех случаях выпрямления тела делать вдох, при сгибании – выдох; в процессе выполнения циклических движений ритм дыхания приспосабливать к ритму движения, акцентируя внимание на выдохе; избегать необоснованных задержек дыхания и натуживания.

Не нашли то, что искали? Воспользуйтесь поиском:

Изменения в системе крови, кровообращения и пищеварения при интенсивной мышечной деятельности

Оглавление

Изменения в системе крови и кровообращения 2

Влияние физических упражнений на органы кровообращения 4

Присасывающие действия в кровообращении и мышечный насос. Гравитационный шок. 6

Изменения в деятельности пищеварительной системы под влиянием мышечной деятельности 7

Список литературы 9

Введение

Мышечная работа необходима для нормальной жизнедеятельности организма человека. Количество энергии, затрачиваемое непосредственно на физическую работу, должно составлять не менее 1200 – 1300 ккал в сутки. В связи с этим, для лиц, не занимающихся физическим трудом и расходующих на мышечную деятельность меньшее количество энергии, физические упражнения особенно необходимы.

В организме каждого человека под влиянием физического труда в клетках органов и тканей, на которые падает физическая нагрузка, активируется синтез нуклеиновых кислот и белков. Эта активация приводит к избирательному росту клеточных структур, ответственных за адаптацию к физической нагрузке. В результате, во-первых, возрастают функциональные возможности такой системы, а во-вторых, временные сдвиги переходят в постоянные прочные связи.

После окончания мышечной деятельности расход энергии некоторое время остается еще повышенным по сравнению с уровнем покоя. Это обусловливается химическими процессами в мышце, связанными с окислением молочной кислоты и ликвидацией кислородного долга.

Такие изменения в организме человека вследствие интенсивной мышечной деятельности во всех случаях представляют собой реакцию целого организма, направленную на решение двух задач: обеспечения мышечной деятельности и поддержания постоянства внутренней среды организма (гомеостаза).

Изменения в системе крови и кровообращения

При регулярных занятиях физическими упражнениями в крови увеличивается количество эритроцитов и гемоглобина, обеспечивающее рост кислородной емкости крови; возрастает количество лейкоцитов и их активность, что повышает сопротивляемость организма к простудным и инфекционным заболеваниям.

Так же, при мышечной нагрузке пропорционально ее величине происходит увеличение секреции глюкагона, возрастает его концентрация в крови и одновременно происходит снижение концентрации инсулина. Закономерно увеличивается выход в кровь соматотропина (СТГ — гормона роста), что обусловлено возрастающей секрецией в гипоталамусе соматолиберина. Уровень секреции СТГ постепенно нарастает и длительное время остается повышенным. В нетренированном организме секреция гормона не может перекрыть возросший захват его тканями, поэтому уровень СТГ у нетренированного человека при тяжелой физической нагрузке существенно снижен.

Физиологические сдвиги негативного плана (нарастание концентрации молочной кислоты, солей и т.п.) после непосредственной мышечной деятельности у тренированных людей легче и быстрее ликвидируются с помощью, так называемых, буферных систем крови благодаря более совершенному механизму восстановления.

В центре сердечно-сосудистой системы находится сердце. Кровь в организме под воздействием работы сердца находится в постоянном движении.

Кровь в организме под воздействием работы сердца находится в постоянном движении. Этот процесс происходит под воздействием разности давления в артериях и венах. Артерии – кровеносные сосуды, по которым кровь движется от сердца. Они имеют плотные упругие мышечные стенки. От сердца отходят крупные артерии (аорта, легочная артерия), которые, удаляясь от него, ветвятся на более мелкие. Самые мелкие артерии разветвляются на микроскопические сосуды-капилляры. Они в 10 – 15 раз тоньше человеческого волоса и густо пронизывают все ткани тела. Например, в 1 мм2 работающей скелетной мышцы действует около 3000 капилляров. Если все капилляры человека уложить в одну линию, то ее длина составит 100 000 км. Капилляры имеют тонкие полупроницаемые стенки, через которые во всех тканях организма осуществляется обмен веществ. Из капилляров кровь переходит в вены – сосуды, по которым она движется к сердцу. Вены имеют тонкие и мягкие стенки и клапаны, которые пропускают кровь только в одну сторону – к сердцу.

Двигательная активность человека, занятия физическими упражнениями, спортом оказывают существенное влияние на развитие и состояние сердечно-сосудистой системы. Пожалуй, ни один орган не нуждается столь сильно в тренировке и не поддается ей столь легко, как сердце. Работая с большой нагрузкой при выполнении спортивных упражнений, сердце неизбежно тренируется. Расширяются границы его возможностей, оно приспосабливается к перекачке количества крови намного большего, чем это может сделать сердце нетренированного человека. В процессе регулярных занятий физическими упражнениями и спортом, как правило, происходит увеличение массы сердечной мышцы и размеров сердца. Так, масса сердца у нетренированного человека составляет в среднем около 300 грамм, у тренированного – 500 грамм.

Току крови в теле способствуют 3 мышечные образования, работающие на одном и том же принципе: это сердце, скелетные мышцы и венозная помпа. Мышцы наряду с сердцем ответственны за циркуляцию крови в тех органах, которые слабо обеспечены мышечными волокнами. Без достаточно интенсивной работы мышц не может быть полноценной работы органов кровообращения.

Влияние физических упражнений на органы кровообращения

Необходимость достаточно эффективной мышечной работы понятна из такого известного факта. Если, например, положить в гипс здоровую руку и долго ее там удерживать без движений, то спустя достаточно большой промежуток времени мышцы рук начнут слабеть, атрофироваться, произойдет постепенное рассасывание ее тканей, вплоть до полного отмирания конечностей. И это при том, что сосуды руки были целы, а сердце продолжало исправно работать. Поэтому мы еще раз убеждаемся, что каждая мышца является не только органом движения, но и активно обслуживает тот или иной участок системы кровообращения, жизнедеятельности организма в целом.

Работающие мышцы требуют большого количества кислорода и скорейшего удаления из крови углекислоты. Эту функцию как раз выполняет сердце в малом круге кровообращения. Нагнетая кровь, сердце работает чаще, так как в легких отсутствует скелетная мышечная ткань.

Для успешной деятельности всех органов кровообращения нужны движения, труд, физкультура. Еще в XI веке великий таджикский философ, врач и ученый Абу Али Ибн Сина (Авиценна) писал: «Если заниматься физическими упражнениями, то нет никакой нужды в употреблении лекарств, применяемых при разных болезнях, если в то же время соблюдать все прочие предписания нормального режима».

Показателями работоспособности сердца являются частота пульса, кровяное давление, систолический и минутный объем крови. Систолический объем в покое у нетренированного сердца составляет порядка 50–70 мл, у тренированного уже 70–80 мл; при интенсивной мышечной работе соответственно – 100–130 мл и 200 мл и более.

Физическая работа способствует расширению кровеносных сосудов, снижению тонуса их стенок; умственная работа, так же как и нервно-эмоциональное напряжение, приводит к сужению сосудов, повышению тонуса их стенок и даже спазмам. Такая реакция особенно свойственна сосудам сердца и мозга. Длительная напряженная умственная работа, частое нервно-эмоциональное напряжение, не сбалансированные с активными движениями и с физическими нагрузками, могут привести к ухудшению питания этих важнейших органов, к стойкому повышению кровяного давления, которое, как правило, является главным признаком гипертонической болезни. Свидетельствует о заболевании также и понижение кровяного давления в покое (гипотония), что может быть следствием ослабления деятельности сердечной мышцы. В результате специальных занятий физическими упражнениями и спортом кровяное давление претерпевает положительные изменения. За счет более густой сети кровеносных сосудов и высокой их эластичности у спортсменов, как правило, максимальное, а давление в покое оказывается несколько ниже нормы.

В покое кровь совершает полный кругооборот за 21–22 секунды, при физической работе всего за 8 секунд и менее, при этом объем циркулирующей крови способен возрастать до 40 л/мин. В результате такого увеличения объема и скорости кровотока значительно повышается снабжение тканей организма кислородом и питательными веществами. Особенно полезна тренировка для совершенствования сердечнососудистой системы в циклических видах спорта на открытом воздухе.

Читайте также:  Насос на солнечных батареях для садовых прудов

Присасывающие действия в кровообращении и мышечный насос. Гравитационный шок.

При переходе крови из капилляров в вены давление падает до 10–15 мм рт.ст., что значительно затрудняет возврат крови к сердцу, так как ее движению препятствует еще и сила гравитации. Венозному кровообращению способствует присасывающее действие сердца при расслаблении и присасывающее действие грудной полости при вдохе. При активной двигательной деятельности циклического характера воздействие присасывающих факторов повышается. При малоподвижном образе жизни венозная кровь может застаиваться (например, в брюшной полости или в области таза при длительном сидении). Вот почему движению крови по венам способствует деятельность окружающих их мышц (мышечный насос). Сокращаясь и расслабляясь, мышцы то сдавливают вены, то прекращают этот пресс, давая им расправиться, и тем самым, способствуют продвижению крови по направлению к сердцу, в сторону пониженного давления, так как движению крови в противоположную от сердца сторону препятствуют клапаны, имеющиеся в венозных сосудах. Чем чаще и активнее сокращаются и расслабляются мышцы, тем большую помощь сердцу оказывает мышечный насос. Особенно эффективно он работает при локомоциях (ходьбе, гладком беге, беге на лыжах, на коньках, при плавании и т.п.). Мышечный насос способствует более быстрому отдыху сердца и после интенсивной физической нагрузки.

Существует феномен гравитационного шока, который может наступить после резкого прекращения длительной; достаточно интенсивной циклической работы (спортивная ходьба, бег). Прекращение ритмичной работы мышц нижних конечностей сразу лишает помощи систему кровообращения: кровь под действием гравитации остается в крупных венозных сосудах ног, движение ее замедляется, резко снижается возврат крови к сердцу, а от него в артериальное сосудистое русло, давление артериальной крови падает, мозг оказывается в условиях пониженного кровоснабжения и гипоксии. Как результат этого явления – головокружение, тошнота, обморочное состояние, Об этом необходимо помнить и не прекращать резко движения циклического характера сразу после финиша, а постепенно (в течение 3 – 5 минут) снижать интенсивность.

Изменения в деятельности пищеварительной системы под влиянием мышечной деятельности

Изменения в пищеварительной системе во время мышечной деятельности происходят под влиянием нервной системы и системы желез внутренней секреции.

Мышечная работа оказывает влияние на различные функции системы пищеварения по принципу моторно-висцеральных рефлексов. Изменения, наступающие в результате физической нагрузки, различны. Интенсивная мышечная работа резко тормозит моторную, секреторную и всасывательную функции, а умеренные нагрузки стимулируют деятельность пищеварительной системы.

В свою очередь физические нагрузки посредством афферентной, проприоцептивной импульсации от работающих мышц оказывают влияние на центральные механизмы регуляции пищеварения в головном мозге. Специальные физические упражнения для мышц брюшного пресса оказывают непосредственное, воздействие на внутрибрюшное давление, упражнения в диафрагмальном дыхании меняют положение диафрагмы, оказывая давление на печень, желчный пузырь.

При легкой физической работе, такой как пешая прогулка, дыхательные упражнения, особенно – брюшное дыхание у человека улучшается кровоснабжение органов пищеварения, что стимулирует процессы пищеварения.

В свою очередь, при тяжелой или продолжительной физической работе процессы пищеварения существенно угнетаются. Пищеварение тормозится как ввиду ухудшения кровоснабжения органов пищеварительной системы, так и вследствие тормозящего влияния нервной системы.

При физической нагрузке у человека в органах пищеварения могут происходить такие изменения как: уменьшение выделения слюны, особенно жидкой. Слюна становится густой и вязкой, создаётся эффект «пересыхания в горле». Существенно снижается кровоснабжение желудка и кишечника, что нарушает выполнение ими пищеварительных функций. Соответственно, уменьшается выделение желудочного сока, ослабляются сокращения стенок желудка, и происходит угнетение процессов перемешивания пищи с пищеварительными соками, расщепления и всасывания веществ в желудке. В таком случае начинают тормозиться процесс продвижения пищи По кишечнику, угнетается расщепление и всасывание веществ в кишечнике. А так же уменьшается выделение сока поджелудочной железы и выделение желчи печенью.

Регулярные занятия физическими упражнениями положительно сказываются на функциональном состоянии органов пищеварения. В начале любого вида мышечной деятельности происходит активизация обменных процессов в организме, что улучшает кровоснабжение органов пищеварения. Развитие мышц брюшного пресса не только улучшает механическую защиту органов брюшной полости (в том числе кишечника, желудка, печени, поджелудочной железы), но и способствует повышению внутрибрюшного давления. Повышение внутрибрюшного давления, в свою очередь, стимулирует мускулатуру органов пищеварения, предупреждая развитие застойных явлений в них (задержка пищи в желудке или кишечнике, запоры) и ускоряя процессы пищеварения, всасывания и удаления непереваренных остатков пищи.

Заключение

Таким образом, систематическая двигательная активность, занятия физической культурой и спортом оказывают положительное воздействие на организм человека, в т.ч. органы кровообращения и пищеварения.

Кровеносные сосуды в процессе физической тренировки становятся более эластичными, артериальное давление держится в пределах нормы. Кроме того, физические упражнения развивают двигательную мускулатуру и тем самым улучшают обмен веществ, ускоряя процессы пищеварения, всасывания и удаления непереваренных остатков пищи.

Физические упражнения являются средством профилактики недугов, в том числе сердечнососудистых, в развитии которых не последнюю роль играет не тренированное сердце современного человека, лишившего себя оптимальной двигательной активности.

Список литературы

Лечебная физическая культура. Учебник для вузов. / В.И. Дубровский ВЛАДОС-ПРЕСС, 2006 – С. 624

Лечебная физическая культура и массаж: Учеб. / В.А. Епифанов –М.: ГЭОТАР – МЕД, 2004. – С. 560

Питание и здоровье / Р. И. Воробьев. – М. : Медицина, 1990. – С. 160 : ил.

Физическая культура студента. Учебник для вузов / под ред. В. И. Ильинича. – М. : Гардарики, 2001. – С. 447

phlebolog.pro

Сайт врача Дробязго С.В.

Ходьба против варикоза. Роль мышечно-венозной помпы.

Мышцы ног прокачивают кровь по венам, они являются периферическим сердцем для венозной системы. Слаженная работа мышц и вен нижних конечностей называется мышечно-венозным насосом или помпой. Венозная система нижних конечностей доставляет кровь от периферических тканей к сердцу.

Для работы этой системы необходимы два основных условия: 1) нормальная работа венозных клапанов, которые предотвращающает рефлюкс или возврат крови под действием гравитации; 2) система импульсно-аспирационных насосов – мышечно-венозная помпа.

Мышечно-венозную помпу можно разделить на четыре составляющих. Их синхронную работу во время ходьбы описали Гарднер и Фокс около 30 лет назад:

  • помпа стопы, боковые вены подошвы (латеральная плантарная сеть)
  • помпа голени (камбаловидная мышца)
  • икроножная мышца (работает в подколенной ямке, прокачивая кровь выше колена)
  • помпа бедра (полусухожильная мышца, бицепс и квадрицепс бедра)

Второй и третий компоненты наиболее важны, вместе они выполняют основную работу по транспортировке венозной крови.

Не меньшее значение имеет синхронизация работы этих насосов во время ходьбы: стопа, затем голень, подколенная ямка и, наконец, бедро.

Роль венозных клапанов

Венозные клапаны играют ключевую роль. Во время сокращения (состолы), мышцы проталкивают кровь по направлению вверх. Однако затем, во время расслабления мышц (диастолы) кровь под действием сил гравитации устремляется вниз. В этот момент закрываются створки венозных клапанов, которые предотвращают возврат крови (рефлюкс). Клапаны обеспечивают односторонний ток крови по направлению снизу вверх и из поверхностных вен в глубокие.

Венозные клапаны состоят из двух полулунных створок, прикрепляющихся к стенкам вены.

Клапаны есть как в глубоких, так и в поверхностных венах. В местах впадения мелких вен в более крупные всегда расположены клапаны, называемые остиальными (расположенные в устьях вен). Другие клапаны расположены по ходу вены на всем ее протяжении, они называются стволовыми.

Анатомические особенности клапанов создают ряд динамический эффектов.

Лурье и Кистнер впервые предложили концепцию описывающую локальную гемодинамику определяемую ориентацией и движением створок клапанов. Под действием мышечного насоса кровь, проходя через клапан образует джет или струю с максимальной скоростью кровотока в центре. Этот эффект создают створки клапанов, которые в момент максимального мышечного сокращения образуют воронку. Расположение клапанов также играет большую роль. Клапаны вен, сливающихся в более крупный ствол расположены под таким углом друг к другу, что их сруи сливаясь формируют спиральный поток. Таким образом клапаны оптимизируют кровоток, предотвращая гемодинамические проблемы при слиянии двух вен разного диаметра.

В отсутсвие нормальной работы венозных клапанов, работа мышечной помпы не будет давать результата. Кровоток становится разнонаправленным, образуются зоны замедления (стаз) и повышенного давления. Это приводит к развитию хронической венозной недостаточности.

Мышечно-венозная помпа работает как функциональная цепь: сначала мы наблюдаем как во время ходьбы, с каждым шагом опорожняются венозные резервуары стопы. Кровь беспрепятственно циркулирует между поверхностными и глубокими венами стопы.

Затем эту активность подхватывает насос камбаловидной мышцы голени. Наибольшее значение имеет латеральное венозное сплетение m. soleus, которое дренируется через малоберцовую вену. Более мелкие вены медиальной порции камбаловидной мышцы сообщаются с задней большеберцовой веной через горизонтальные коллатерали.

В подколенной ямке, несколько выше сустава, мы наблюдаем наиболее мощный венозный насос икроножной мышцы. Здесь происходит мощный выброс в подколенную вену, который проталкивает столб венозной крови вверх с формированием аспрационного эффекта ниже щели коленного сустава. Затем включаются мышцы бедра, главным образом бицепс и полумембранная мышца, венозные аркады которой образуют шунты между подколенной и глубокой бедренной венами, выполняя роль “клапана безопасности” и защищая подколенную вену от избыточного давления.

В последнюю очередь в работу вступает квадрицепс бедра, прокачивающий кровь в общую бедренную вену. Знание анатомии венозных насосов нижних конечностей, в особенности венозной помпы голени, объясняет механизм развития венозной недостаточности при нарушении подвижности голеностопного сустава и деформации стопы.

Оцените статью
Добавить комментарий